
UNCLASSIFIED

Reliability Engineering for Service Oriented

Architectures

Michael Pilling

Command, Control, Communications and Intelligence Division

Defence Science and Technology Organisation

DSTO–TR–2784

ABSTRACT

This paper reviews the state of the art in Software Reliability Engineering
(SRE), and adapts these methods for use in Service Oriented Architecture
(SOA). While some prior work has been done on using SRE for SOA, it is
incomplete in terms of whole of development life cycle methodology. We outline
how existing complete methodologies would translate to SOA and provide a
surprisingly simple way of applying these methods to certify the use of legacy
software in SOAs. This paper provides a proof of concept but further work
needs to be done to elaborate these methodologies for application in SOA.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DSTO–TR–2784 UNCLASSIFIED

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: (08) 7389 5555
Facsimile: (08) 7389 6567

c© Commonwealth of Australia 2013
AR No. AR-015-477
February 2013

APPROVED FOR PUBLIC RELEASE

ii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

Reliability Engineering for Service Oriented Architectures

Executive Summary

This report looks at how Service Oriented Architecture (SOA) based systems differ from
other types of Defence software systems and discusses the important issue of Software
Reliability Engineering (SRE) for SOAs.

SRE is needed to be able to procure and predictably deliver Defence software systems
based on SOA that can be guaranteed to operate successfully (within specifications). This
is necessary to ensure they can be relied on in battle.

The report examines the current state of the art in Software Reliability Engineering
and shows how aspects of existing work can be applied in the SOA context.

In particular it shows how to use SRE to certify:

• The core SOA infrastructure,

• Services composed from other services,

• Applications, and

• Importantly, how to certify legacy systems for incorporation into SOA applications,
SOA systems or systems of SOA systems.

The report provides several recommendations for enabling SRE for SOA in Defence
and also shows how Reliability Certification provides a clear and transparent method for
acceptance or rejection of software deliverables by the Australian Defence Force.

Key recommendations of the report are:

• Defence adopt automated testing for SOA based on black box specifications and us-
age models allowing for automatic test oracles and automated testing of new software
components, software compositions and applications. Governance should ensure that
such specifications and usage models are recorded for each entity in the software hi-
erarchy. Such techniques have driven a ten fold reduction in the measured incidence
of software defects for the US DoD.

• Defence SOA computing nodes should be able to operate in three modes: test, normal
and war/high reliability, each having stricter reliability certification requirements
than the previous.

• Governance is crucial for a well functioning SOA environment and should include
provenance for both software and data. This is essential for quarantining problems
and for finding the root causes of problems.

• The software repository for the SOA environment should record for each component
and software composition/application its current synthetically tested reliability esti-
mate and field tested reliability measure so that decisions to include certain software
in a system can be made in an informed manner.

UNCLASSIFIED iii

UNCLASSIFIED DSTO–TR–2784

Author

Michael Pilling
C3ID

(U) Michael Pilling completed a Bachelor of Science degree
with honours in 1987 and a Ph.D. in Computer Science in 1996
at the University of Queensland, Australia. Michael’s speciali-
ties are distributed and real-time systems, job scheduling, for-
mal specification and program correctness, criticality manage-
ment, and the calculus of time. His current interests include
Software Reliability Engineering, Failure as a fundamental con-
struct in usable and effective systems, Virtual Synchrony and its
application to synchronous group communication, performance
engineering of computer systems, and graceful degradation of
systems in the face of failure and overload.

UNCLASSIFIED v

UNCLASSIFIED DSTO–TR–2784

Contents

Glossary xi

1 Introduction 1

1.1 CIOG Mandate . 1

1.2 What is an SOA and why is it different? 1

1.3 What do we mean by Reliability? . 3

1.4 Other approaches to Reliability . 4

1.5 Data correctness is an important issue this paper does not address 4

1.6 Uncontrolled (Foreign) Domains . 4

1.7 Composite Applications . 5

1.8 What this paper seeks to achieve . 5

2 Review of Software Reliability Engineering (SRE) Approaches 5

2.1 Statistical Analysis based on Markov Chains 6

2.2 Musa’s Approach . 9

2.3 Service Oriented Approaches . 15

3 Orchestration vs. Choreography 17

3.1 Languages for Orchestration and Choreography 19

3.2 ESB and Service lookup . 20

3.3 Other service composition issues affecting reliability 21

4 Applying Software Reliability Engineering to SOA 22

4.1 A layered approach to Certifying the SOA 24

4.2 Certifying from the core out . 24

4.2.1 Certifying individual Services . 26

4.3 How we might estimate reliability of Service Compositions 27

4.4 Performing Upgrades . 27

4.5 Certifying Legacy Systems as Components 28

5 Implications for ADF procurement 29

6 Recommendations to enable SOA SRE 29

7 Conclusions 31

UNCLASSIFIED vii

DSTO–TR–2784 UNCLASSIFIED

References 33

viii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

Figures

1 A usage Markov chain showing transition probabilities for an auto-teller . . . 7

2 SRE fault intensity reduction (solid line) vs. with standard testing (dashed) . 13

3 Layered Services in an SOA . 25

UNCLASSIFIED ix

DSTO–TR–2784 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

x UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

Glossary

ADF Australian Defence Force

Choreography A method of creating a complex service out of simpler ones in which no
party in the interaction is aware of anything but its own part to play, see section 3.

CIOG Chief Information Officer Group

COTS Commercial Off The Shelf software. Commercial software that is pre-written for
generic requirements of a particular domain.

CORBA Common Object Request Broker Architecture

Ecosystem In software, an ecosystem is a set of applications and/or services that grad-
ually build up over time to provide a rich and diverse offering of functionality. An
SOA’s economic value is derived from the utility of the ecosystem that grows in it.

ESB Enterprise Service Bus

Foreign In an SOA context: Any SOA, service or software which the owners of the calling
software do not have control of, either in terms of infrastructure, code and debugging,
or operation.

GOTS Government Off The Shelf software. Like COTS but built and owned by Govern-
ment.

GUI Graphical User Interface

Open Source Software written by others for which the source code is published and thus
able to be modified and adapted by the end user under prescribed legal conditions.

Operational Profile A detailed usage context for software being considered consisting
of a complete set of significant operations along with their probability of occurrence.

Orchestration A method of creating a complex service out of simpler ones using a central
controller, see section 3.

NGO Non-Government Organisation, usually charities or non-profits but also businesses.

QoS Quality of Service

SOA Service Oriented Architecture

SRE Software Reliability Engineering

System Mode Many systems exhibit different modes of operation. E.g. the cockpit
automation of a commercial airliner will have different active tasks during each of
its modes such as Taxiing, Take-Off, Landing, Climb and Cruise. Defence systems
effectively have peace-time and war-time modes of operation although these may be
factors of usage rather than consisting of different sets of programs.

Usage Model A usage profile or operational profile plus a statistical model of how likely
each significant operation is to follow any other significant operation.

UNCLASSIFIED xi

DSTO–TR–2784 UNCLASSIFIED

Usage Profile See operational profile.

W3C World Wide Web Consortium

WSDL Web Services Description Language

XML Extensible Markup Language

xii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

1 Introduction

1.1 CIOG Mandate

CIOG has mandated that future Defence information systems will be built using an SOA
infrastructure[CIO10, CoA11].

A key driver for SOA adoption is the expectation of being able to compose new services
from existing lower level services, not only allowing reuse of software and so lower software
build costs but also enabling access to a wide variety of Defence and whole of government
data for uses that were not envisioned when the original systems were constructed.

However, deployed and peacetime Defence Systems such as those monitoring, assessing
and ensuring the preparedness of the ADF for potential deployments must be stable and
reliable. Given that SOAs will be the core platform of the future Defence Information
Environment, this paper looks at how Defence can determine and certify the reliability
of SOA-based systems so they can be deployed with confidence in their stability and
correctness.

1.2 What is an SOA and why is it different?

When CIOG issued a Defence instruction stating that SOA is now the preferred architec-
tural style for the Defence information environment, it defined SOA this way:

Service Oriented Architecture (SOA) represents an architectural style that aims
to enhance the agility and cost-effectiveness of delivering IT capability within
an enterprise while simultaneously reducing the overall risk and maximising
the organisational investment in its IT capability. It accomplishes this by
encapsulating technical capability as one or more business services that are
used and re-used throughout the enterprise. SOA supports service-orientation
through the realisation of the strategic goals represented by service-oriented
computing. For example, some key SOA goals include risk reduction, agility,
and existing technology investments.[CoA11]

There are many definitions of what constitutes a Service Oriented Architecture (SOA),
however the following one:

SOA is an architectural paradigm for dealing with business processes dis-
tributed over a large landscape of existing and new heterogeneous systems
that are under the control of different owners.[Jos07],

is highly relevant for the Australian Defence context because of the need to integrate
many legacy systems, to interoperate with other forces and increasingly to interoperate
with other Australian Departments, both State and Federal, as well as with businesses
and NGOs for counter-terrorism operations and civil emergencies.

UNCLASSIFIED 1

DSTO–TR–2784 UNCLASSIFIED

Other relevant definitions emphasise platform independence and loosely coupled inter-
operability[SOA06]; visibility of interactions and their effects[Oas06] and implementation
diversity and whole of life-cycle management[NL05].

Many people appear to equate SOAs with Web Services1 but Web Services, in and
of themselves, are neither necessary nor sufficient to create an SOA. Other distributed
technologies such as message queues can be used to build an SOA and it is the organisation
of interfaces around self-contained business process steps that most strongly distinguish
SOAs from other distributed architectures which are usually implementation centric2. It
is these relatively coarse-grained independent business process steps that lend themselves
to composition into many different business applications. SOAs are focused on creating
end user business value.

Nor do distributed objects such as those commonly provided by CORBA, of themselves,
constitute an SOA[Jos07]. Experience shows that such remotely accessed objects are code-
centric rather than business process-centric and generally result in complicated, highly
coupled applications with lots of dependencies that will not scale.

The focus on business processes and value affects the applications and structure of
SOAs at every level. In particular, as individual SOAs age and develop, they almost
inherently end up being heterogeneous implementations as more of the organisation’s
existing infrastructure is linked into the SOA. While the organisation may seek to constrain
this heterogeneity, and this is a useful goal in terms of reducing complexity to manageable
levels, eventually a merger or partnership interaction will force the SOA to accommodate
foreign technologies. Likewise any SOA that is running in real-world deployment will
eventually end up with multiple versions of the same service co-existing as upgrades occur.

To meet the challenge of providing a usable and reliable yet diverse operating plat-
form for Defence, system specialists will have to integrate components, including legacy
components, into working applications that can provide semantic, operational and timing
guarantees to their users or other higher order components.

SOA systems are also inherently dynamic. Not only are their components loosely
integrated and bound together by run time scripts but also these components may be in
a state of flux as they are modified, upgraded, replaced and retired.

Clearly Defence Systems built on SOA will need to be reliable, but SOA throws up
some particular challenges for building and certifying reliable systems. These include:

• The integrated grid of Defence SOA platforms may be sprawling and also highly
diverse, how can one talk about reliability for such a system?

• How can one be sure a Defence System built on SOA is reliable enough to deploy?

• Some components of Defence SOAs will be wrapped legacy systems, how can and
should these be certified?

1 Processes called by each other over the internet or similar infrastructure in a call-response manner
using protocols such as Http or SOAP.

2 I.e. they have interfaces that strongly embody the implementation, dealing with information technol-
ogy concepts rather than business concepts.

2 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

• How can one deal with components built and / or maintained by others and still get
a reliable system?

• What can be said about the reliability of services created by composing other ser-
vices?

• How do multiple versions of the same component affect reliability and the calculation
and certification of reliability?

• What can one say about the reliability of compositions that include foreign services,
i.e. services provided by other organisations or sub-organisations of Defence itself?
(The technical issue here is that the part of Defence operating this SOA instance
has no control, only influence, over the ”foreign” service. While foreign services
may be provided by subcontractors, other government departments or even enclaves
of Defence itself; a special case of foreign services for Defence are those services
provided by its coalition partners in a war, an exercise, or for peace-time sharing of
information and services.)

1.3 What do we mean by Reliability?

Musa, Iannino and Okumoto produced what is now a standard definition for software
reliability.

Software Reliability is the probability that a system or a capability of a system
will continue to function without failure for a specified period in a specified
environment. “Failure” means the program in its functioning has not met user
requirement in some way.[MIO87]

This is a quite specific definition that still allows considerable latitude so that software
reliability can be expressed in terms meaningful to the system users. For instance, the
period can be a length of time that is natural to the system: days for a call service centre
or minutes for a missile guidance system. While system execution time is the fundamental
denominator of software reliability, using proxies for system execution time allows software
reliability to be easy to calculate and to be represented in a scale that is meaningful to
humans and compatible with measures of hardware reliability. Such proxies for system
execution time can be the wall clock time as above or the number of invocations of the
system or the number of executions of a core system function such as database lookups
in a retrieval system. So measures may be a 1% chance of failure per hour, or a 0.5%
chance of failure per 100,000 database accesses. A failure is as the user would define it, so
anything that prevents the system from being workable is definitely a failure; however it is
arguable whether a message being presented in the wrong colour is - it would be if it were
a safety critical warning message and the colour failed to draw attention to the message or
contradicted a standard safety colour requirement. While the above definition may sound
loose at first glance, it is tied down once it is instantiated for any particular system. In
general things that are arguable failures in a particular context are something that users
in that context can live with, whereas true failures are things that users cannot tolerate.
Of relevance to Defence, Musa notes that software safety is a specialised subcategory of

UNCLASSIFIED 3

DSTO–TR–2784 UNCLASSIFIED

reliability[Mus04]. The above definition of software reliability was deliberately designed
to produce a measure that is numerically comparable to hardware reliability enabling a
single reliability for combined hardware and software systems to be calculated.

Note that reliability is always greater than availability, as availability is reduced by
the time to diagnose, repair and/or reboot after a software or hardware failure.

1.4 Other approaches to Reliability

We specifically don’t consider important approaches to creating higher reliability such as
software redundancy, redundant software output voting, hot fail-over or other fault tol-
erance techniques, firewalling and circuit breakers[Nyg07]. These techniques enable us to
build systems with higher reliability out of lower reliability components, but they rely on
those underlying components still having some minimum and known standards of relia-
bility in order to be configured correctly and generally cannot rescue a deeply unreliable
system. These techniques are predicated on a slightly different concept of reliability in
which the underlying components do fail but that failure is recovered from so the macro
component is seen as reliable. They also do not give any insight into how to measure
the reliability of the underlying components or how to drive increases in their reliability.
Equally, we do not cover cases where the native reliability is degraded by security attack,
or is undermined by the SOA making bad data more available[PSRF09]. We prefer to fo-
cus this paper on the necessary problem of calculating and improving the reliability of the
core software components and any products made from them using non-redundant calling.
Successfully solving this problem will allow these other techniques to be applied in ways
that allow the augmented reliability of the redundant service to be calculated given the
component reliabilities.

1.5 Data correctness is an important issue this paper does
not address

Even with correctly functioning programs, an SOA can deliver incorrect results if the data
it operates on is incorrect or inappropriate to the problem[TWZ+07, Fis09]. We regard
these as separate problems, namely of correctness of specification, intent and quality of
data capture and encoding; rather than the problem of component correctness and system
reliability quantification we are investigating.

1.6 Uncontrolled (Foreign) Domains

We are particularly interested in how to analyse systems that by necessity make calls to
services resident in SOA domains that Defence itself does not control. A methodology for
building and certifying Reliable SOAs cannot be complete without being able to handle
this problem.

4 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

1.7 Composite Applications

Likewise a primary, if not defining, feature of SOAs is composite applications. These are
applications built by temporarily combining existing components through orchestration
or choreography to produce a bigger application. The differences between orchestration
and choreography are dealt with in detail in section 3. A composition may be performed
manually by a human writing an orchestration or choreography script. More rarely, as the
technology is still underdeveloped, they may be automatically composed by the system.

This brings us to the static-dynamic composition spectrum. Component services may
be listed in a white pages service, where they can be looked up by name; in a yellow
pages service, where they can be looked up by function; and in a green pages service
where their interfaces and calling protocols can be looked up. Even in the white pages, a
specific name may lead to several versions of the service ranging from obsolete to current
to experimental / in testing. Depending on whether particular services are hardwired
into human written scripts or whether they are looked up in such services, and whether a
specified instance of a replicated set of services is called; the same script may invoke the
same service instances every time or it may invoke completely different service instances
each time or even instances derived from different code bases.

Our methodologies for quantifying reliability must take these possibilities into account.

1.8 What this paper seeks to achieve

“Service modelling and service-oriented engineering — service-oriented analysis, design
and development techniques, and methodologies — are crucial elements for creating mean-
ingful services and business process specifications[PTDL07].”

We agree and believe part of these engineering techniques are methodologies for meet-
ing reliability requirements in SOA systems. This paper seeks to show:

• How SOA reliability might be engineered in,

• How SOA component reliabilities might be measured

• How reliability can be maintained or certain reliability levels reached when some
components are a given or even foreign3.

We wish to be able to calculate reliabilities required for components, measure their
actual reliability during system building and validate or certify that those reliabilities
have, in fact, been achieved.

2 Review of Software Reliability Engineering

(SRE) Approaches

In this section we examine existing approaches to SRE to inform our development of tai-
lored approaches to SOA SRE. Before reviewing current Software Reliability Engineering

3any code that is not written by this organisation including COTS, GOTS, Open Source and Freeware

UNCLASSIFIED 5

DSTO–TR–2784 UNCLASSIFIED

approaches, it is important to realise that it follows from the definition of reliability that
every assessment of reliability must be against an explicit or implicit specification of the
software’s correct behaviour. We also need to distinguish between faults and reliability.
Each fault in the software may or may not be severe enough to cause a failure. For instance
the earlier example of a message being printed in an unexpected colour may never qualify
as a failure in some instances, whereas a memory leak fault may need to be activated
thousands of times before it accumulates enough damage in the running system to cause a
failure. Faults must be activated to become apparent. For this reason reliability is a func-
tion of the actual usage of the system, and so testing and certification must be performed
with respect to an expected usage of the system. It is likely that over time the actual
usage will diverge from original expectations. This is especially true of core infrastructure
in an SOA. If the usage of the system never activates a fault, it cannot be the cause of
a failure and so the fault’s existence is irrelevant to the reliability of the system in that
usage context. For this reason the reliability of a software product can change when it is
re-purposed, such as when a component is reused in a new service composition.

Since it is simplistic to equate faults with failures, it is incorrect and misleading to
consider measures of fault removal to be indicative of the reliability of a system.

2.1 Statistical Analysis based on Markov Chains

One significant approach in reliability engineering is analysis of software systems based on
Markov chains. A Markov chain is a representation of a system that has multiple potential
states using a transition diagram in which nodes represent states and edges represent tran-
sitions between them. A defining feature of a Markov chain is that the choice of transition
out of any state is a function purely of its current state and an input, not the history
of previous states. Some transitions may return a Markov chain to a previously visited
state. This approach arose from Cleanroom Software Engineering[PTLP99] which requires
that all software be rigorously specified. The usual form of Cleanroom specification is to
describe a series of user observable software states and what stimuli causes the transitions
between them. A good example is how pressing the decoration buttons on a GUI window
affects the display of a window, or what delivery or loss/time out of a communications
packet does to the state of a sliding window communications protocol. The important
thing is that each state in the Markov chain does not record the entire state or history of
the system, just the unique state among some subset of attributes4. In the case of this
type of reliability analysis, these attributes will most often be user observable and will at
least be test system observable.

Figure 1 shows a usage Markov chain for a usage most readers are familiar with - that
of using a bank ATM, and also presents a good example of how transition choices that
aren’t truly independent of history, can be made to appear so and not affect the validity
of analysis outcomes. Although the success or failure of a withdrawal is dependent not
only on the current amount requested but also on the history of deposits and withdrawals,
the bank can provide accurate statistical measures of how many withdrawals fail due to

4Researchers are aware that sometimes system state does depend on the entire history of the system,
however most histories map well onto a single state and so it is not an unreasonable model assumption.
Software Reliability Engineering experience also shows this model simplification has worked well.

6 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

Figure 1: A usage Markov chain showing transition probabilities for an auto-teller

insufficient funds so we can build an accurate usage chain and preserve the assumption of
no history. This figure also illustrates how a fault can affect reliability differently depending
on its location. It’s clear from even a cursory examination of this usage Markov chain that
a fault in the Withdrawal code that incorrectly rejects a valid withdrawal is going to cause
an order of magnitude more failures than a fault in the Deposit code that prevents valid
deposits. Mathematical analysis of the model can produce exact failure comparisons for
these two fault locations.

Whittaker and Poore[WP92] describe a process for reliability analysis comprising of
the following steps:

1. A usage Markov chain is constructed from the system or subsystem specification.
The state and transition graph is first constructed from the specification, then each
transition from each node is assigned a probability so that the total probability of
leaving each node except the terminal node is 1. Transition probabilities can be
assigned in multiple ways:

• In the absence of knowledge all transitions leaving a node are assigned equal
probability. This is the uninformed approach.

• If some record of usage sequences is available, these are used to derive the rel-
ative probabilities for each transition This informed approach is most common
when a prototype or prior system exists.

• In the intended approach probabilities are assigned by hypothesised behaviour
of a reasonable user or expected system driver.

In this way, the usage Markov chain embodies the expected usage of the system to
the extent it is known. Such usage chains can be built to the level of granularity ap-
propriate for the problem, usually they would reflect transitions between significant
modules not individual control structures in programs.

2. The usage Markov chain is used to drive testing by generating random inputs that
conform to the expected usage distribution of the system.

3. A testing Markov chain is constructed by initially copying the nodes and transitions
of the usage Markov chain, and each transition is assigned an initial count of zero.

4. During each test when a transition is traversed, its count is incremented in the testing
Markov chain.

UNCLASSIFIED 7

DSTO–TR–2784 UNCLASSIFIED

5. If a failure occurs in state ‘X’, a transition is created from ‘X’ to a new state ‘fail’
with a count of 1. Further failures add new transitions to ‘fail’ or increment the
transitions count if it already exists. In this way the number of failures in each state
can be quantified over a series of test runs. When a failure occurs a decision must be
made whether to continue testing or fix the bug. If the failure is not serious enough
to have to stop the test, a transition is then made from ‘fail’ to the next state it
recovers to.

6. Mathematical formulas are given to analyse the counts in the testing Markov chain
to derive values for reliability and mean-time to failure.

Poore et al.[PMM93] adapt this approach to component based software engineering. In
their Markov chains, each node represents a component and transitions represent passing
control from one component to the next. They make a clear distinction between planning a
software system build, and certifying it to a particular reliability level. In the former case,
estimated reliabilities of components are used to adopt or reject them and the estimates can
be quite crude. Essentially one must choose the best alternative, including the alternative
of a new build of that component. In the latter case, the reliability estimate has to be
accurate enough to decide to field a system that may be mission critical. Their system is
based on four basic ideas:

• Systems are composed of components.

• Component reliability can be measured.

• System reliability can be calculated from component information.

• System certification may be based on a different model from that used in reliability
planning.

Component reliability for component selection can be derived from the past history of
that component. If it is a new component, its reliability might be estimated from evidence
such as the past performance of the programmers that produced it, or the quality of the
software development techniques used, or evidence from a testing regime.

The Markov chain model described is referred to in the paper as the component model
and can be used to perform what-if analyses of the effect of modifying the reliability of
particular components. This allows the system designer to see that the reliability of the
system may be very sensitive to the reliability of certain components and comparatively
insensitive to that of others. This can guide software development efforts. One can also set
a system reliability and derive allocated reliabilities for each component needed to meet
that target. The transition probabilities for the component model must be estimated on
the basis of design and intended use, and so humans must decide on the likelihood of each
usage.

Poore et al. give two other models and associated mathematical formulas for deter-
mining reliability.

• A sampling model for estimating the reliability of existing components or subsystems
without regard to their internal construction. It involves generating system inputs

8 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

from a distribution of expected usages and testing the component until a certain
confidence level in the target reliability is reached or the component fails to meet
the reliability.

• A certification model which accumulates data across multiple versions of components
to reach a certifiable reliability rapidly. It makes the statistical assumption that the
mean time to failure grows exponentially over successive versions of the system and
requires that components that are corrected for bugs are regression tested before
reintroduction to the system for further tests.

Some advantages of the Poore et al. approach are:

• Some guidance about which components will be critical to a system’s reliability will
be discernible even without accurate information about the usage of the system.
These can be used to guide software development until a prototype is deployed and
actual usage data collected.

• The derivation of reliability from the model does not make assumptions about the
distributions of faults within the software.

Many aspects of Cleanroom Software Engineering make it attractive as a methodology
for developing reliable SOA based systems. It has a very strong mathematical and statis-
tical basis that not only monitors the development of the software, it also monitors the
development of the production process. A key approach of Cleanroom is to start with high
reliability and stay high. It does this by starting with very small core parts of the system
and get them fully working before adding the remaining functionality incrementally. The
motivation for this is to keep developers enthusiasm up, as well as be able to accurately
state how finished the system is: “At the end of the first increment, for example, one can
be confident that 20% of the system is 100% complete, rather than speculating that 100%
of the system is 20% complete[PTLP99].”

The discrete component nature of SOA makes incremental development a natural fit
and there are many benefits to a having a working system even if it is pared down. Other
components can be developed against the completed parts of the system and because the
completed parts of the system have been thoroughly tested, people doing the development
can be reasonably confident that they will be debugging their own code rather than other’s.

The usage Markov chains not only provide a way to guide development to focus at-
tention on the components that need to be most reliable, they allow for the automatic
generation of test cases that will match the usage of the system.

2.2 Musa’s Approach

In his textbook[Mus04], the late John Musa details a complete development process for
Software Reliability Engineering (SRE)5 of systems in general, before the advent of service
oriented architectures. His approach is as follows:

5Software Reliability Engineering is both the name of Musa’s methodology and a generic term much
like “Hoover”.

UNCLASSIFIED 9

DSTO–TR–2784 UNCLASSIFIED

• Define the product, including who are the suppliers, customers and users. Identify
the base product and any variations, such as the same system provided in a different
language, as well as associated systems that must be tested separately. A variation
may be due to: a substantially different set of users (so the variations will have
different operational profiles); a different operating environment; a different soft-
ware implementation6, a different hardware operating platform, a different change
approval process (so the actual operating set of components will skew over time).

A supersystem is “a set of interactionally-complex systems that include the base
product or a variation plus independent systems, where users judge the product by
the set’s reliability or availability.7” Supersystems may produce very different user
apparent reliabilities out of the same base system.

• Develop an operational profile which is a detailed usage context for the base product
and each of its variations. Generate a complete set of operations along with their
probability of occurrence. Each operation is a self contained major logical task in
the system that is performed for some initiator and returns control to the system
on completion. Examples of operations might be “process fax call” in a PABX or
“display an employee’s leave balance” in a payroll system. In an SOA system, opera-
tions would correspond naturally but not exclusively to top level service invocations.
Operation occurrence rates can be estimated or preferably gleaned from existing
systems, they are then translated into occurrence probabilities. An important step
in capturing all operations is to correctly identify the group of operation initiators
in the system.

Operational profiles along with criticality information can be used to direct software
development effort in many ways.

1. Apply the Reduced Operation Software concept8. In some cases it is more
cost efficient to eliminate low frequency or low criticality operations and use a
manual process. In particular, simply reducing the number of operations in the
software will increase its reliability as there is less code that could contain faults
and the operations remaining will be of higher frequency and therefore better
exercised in test and deployment. This may result in a revised operational
profile.

2. High probability operations are prime candidates for reuse and in an SOA or
software service system should be exposed as a service if they are not already
and they are sensibly reusable business steps.

3. Use operational development to optimise time to deployment, using the Pareto
principle you might implement the 5% of software operations that are used 80%
of the time or are the most critical in the first release and so on. This not only
allows quick deployment for core functionality, but also ensures that in later
releases, the most important operations are already field tested. Musa notes
that installation is a critical but incredibly low frequency operation that must
be included in the first release.

6note e.g. with different bindings
7In Defence terms PMKeys might be a base product and PMKeys accessed by Internet Explorer or by

Mozilla Firefox would be two supersystems.
8The software analogue of RISC hardware.

10 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

4. Allocation of development effort should also be proportional to the operational
profile including system engineering, architecture, requirements and design ef-
fort, coding and unit testing.

Operational profiles are also highly useful when doing Software Performance En-
gineering [Smi90, SW01, SW04] so the effort in creating them can contribute to
multiple outcomes.

• Engineer “Just Right” reliability. That is the minimum truly acceptable reliability at
least cost, but in a degraded development environment given an insufficient budget
to reach that reliability, it may mean accepting the lesser goal of the maximum
reliability possible given resource constraints.

Failure intensity is the inverse of reliability and may be expressed in terms such as
5 failures per 100 print jobs. It is more convenient to work with failure intensity
calculations at this point. The major steps in calculating just right reliability are

1. Define what is meant by “failure”. This must be done from a user perspective,
which may be influenced by legal or industry standards. Note that it is usual
but not necessary that definition of failure is similar among associated systems
or components. Failure severity classes may be defined at this point for later
direction of software correction efforts, but is not necessary for SRE.

2. Choose a common reference unit for all failure intensities. Other reference units
will have to be converted to the common one.

3. Set a system failure objective for the main system and each variation. For the
overall system, the user may be more concerned with reliability or availability.
The former is usually the case when there are dire consequences for it not
working immediately - e.g. a fire control system, whereas the latter is usually
the case where the operations are slightly deferrable, but throughput or access
is important such as a pay system where a certain number of payments must
be made per fortnight and for most of the fortnight the deadline is not near. If
the user prefers availability, simple calculations can derive the required overall
reliability given the time to execute a given recovery procedure.

4. For any software developed in house or under our control:

(a) Find the developed software failure intensity objective. Musa calculates
this by subtracting the failure intensity of acquired software from the sys-
tem failure intensity objective. This implicitly assumes that equal time is
spent in all software components.

(b) Choose software development strategies to optimally meet that objective,
that is components with stronger objectives would be allocated more time
for say design and test, and may also use more rigorous but expensive
development methods like formal methods.

• Prepare for testing. This involves planning both test cases and test procedures.
The key here is to use the operational profile to guide the proportion of effort, and
the proportion of actual tests allocated to each operation. Testing involves feature
testing which corresponds well with operations, load or stress testing which should
be done so the number of simultaneous instances of each operation is in proportion

UNCLASSIFIED 11

DSTO–TR–2784 UNCLASSIFIED

to its operational profile, and regression testing in which the frequency of retesting
operations should be based on their occurrence probability in the operation profile.

It is not envisioned by Musa that the entire regression test suite is exercised on each
update, but rather that this is done over progressive cycles of regression tests as each
change is made.

Musa advocates manually preparing new test cases or at least the classes of test
with automated instantiation of them, rather than simply replaying inputs recorded
from field data, so important but rare inputs are not missed. He also warns that
automated input playback does not allow for optimisations of test cases which are
essentially equivalent and implicitly warns that such playback may mis-sample the
operational profile due to a small or local recorded sample. The number of new
test cases needed is estimated using industry standard models of test cases needed
per 1000 lines of code. Except in the initial version, new test cases relate only to
new functionality added and test cases should be allocated according to each new
operation’s proportion of total new operations, and its operational profile. New
test cases are allocated between a base product and its variations on the basis of
product market-share among the variants, however if the variants differ only in
implementation and not operations then no distinction needs to be made.

• In executing the tests, Musa distinguishes between two types of test which are differ-
entiated not by the stage of the testing in which they occur, but by their objective.

Reliability Growth Test The objective is to find and remove faults. Models are
used to estimate and track failure intensity, which in turn is used to guide
development and when to release. Reliability growth tests are usually used to
system test software you are testing yourself, but it can be used for beta testing
if you are getting the failures resolved. This type of testing includes feature,
load and regression tests. Load testing includes testing for concurrency errors
such as deadlock, livelock and race conditions. Regression testing is used to
test whether previously functional parts of the system have been broken due to
updates. The only advice on the amount of testing time needed Musa gives is
to estimate using the test time of previously tested similar systems.

Certification Test No debugging occurs in certification testing as it requires a sta-
ble system without fixes or added features. The objective is to decide whether
to accept the system or return it for rework. Certification does not rely on
finding a particular sample size of failures, but on a sufficiently high sample
size of operational profile directed test cases. In fact if no failures at all occur
for a sufficiently long test regime the software will be accepted. Likewise it is
possible to certify a system that does demonstrate failures, provided they are
infrequent enough to meet the reliability standard.

Test time includes time taken to set up, record results, clean up and identify failures.
It does not include fault resolution but can be greater than available calendar time
if multiple test systems are available. Although the failure intensity reduction we
are looking for is calculable, Musa offers no way to calculate the amount of test time
needed to achieve that beyond past experience. The available test time is allocated
among supersystems based on their fielded market share among themselves, and an

12 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

estimate of relative risk between 0 and 1 according to previous results with that
system. An as yet untested system has a relative risk of 1.

SRE testing starts after the components have been tested and integrated, and the
system can execute as a whole. The testing system can often detect deviations from
the specification but it is usually up to a human to determine if a particular deviation
constitutes a failure. Failures need to be recorded along with the sequence in which
they occur, so that failure intensity can be calculated.

• Guiding tests. In this activity data collected from testing is used to track the relia-
bility growth, later it is used to certify the system reliability.

Tracking reliability growth is done by estimating the ratio of observed failure in-
tensity (FI) to the system or variant failure intensity objective (FIO), this is done
using one of several available software reliability estimation programs of which Musa
recommends a free example CASRE[Nik02]. Within CASRE Musa generally rec-
ommends using both the logarithmic model which is slightly too pessimistic and
exponential model which is slightly too optimistic. Together they bound the es-
timate quite well. Such estimates are made with increasing frequency as available
testing time is consumed. In most systems the FI / FIO ratio should drop sharply as
testing commences and they slowly trend downwards, this is due to the use of testing
driven by the operational profile. Uniform testing generally results in a linear drop
in this ratio. Figure 2 shows this graphically, the fault intensity is being reduced as
defects are found and software corrections made - spikes in the FI / FIO ratio with
SRE occur when new features or bad fixes are introduced.

Figure 2: SRE fault intensity reduction (solid line) vs. with standard testing (dashed)

Musa recommends that a system is ready for release when its FI / FIO ratio is be-
tween 0.5 and 1.5, the range being due to estimation uncertainty in the CASRE mod-
els. Other software reliability estimation programs allow the user to set confidence
limits for the actual failure intensity estimation and generally Musa recommends the
desired failure intensity be tested at 90% confidence.

For certifying reliability, decision charts based on sequential sampling theory are
available on which to plot successive failures on their axes: failure number and
normalised unit time of failure. By choosing the appropriate chart one can select

UNCLASSIFIED 13

DSTO–TR–2784 UNCLASSIFIED

the discrimination factor or factor of error in estimating the failure intensity you
are willing to accept, the consumer risk level or probability that you will accept an
unacceptable system, and the supplier risk level or probability that you will reject
an actually acceptable system. Each chart contains accept, reject and continue
testing zones. As each test failure is plotted, the zone it falls in tells the tester
what to do with the software. While it is theoretically possible that test failures
could continue to fall in the continue testing zone; in practice they cross into the
accept or reject zones and the testing is very efficient in that such decisions are
made as soon as the minimum number of failures or failure free tests to be able to
decide has been reached. For certifying reliability only operational profile driven load
testing data should be used. Musa[Mus04] provides the most commonly used charts
as well as general formulas for constructing decision charts for any combination of
discrimination factor, consumer risk and supplier risk.

Musa’s approach has many parallels with the Cleanroom approach but is more heuris-
tic in some areas. He does not focus on software specification at all but is very strong on
identifying systems, system operations and their relative usage probabilities. Lacking rig-
orous specification he has a more user centred concept of failure. One of the contributions
of his work highly relevant to SOA is his concept of system variations and supersystems.
Whenever a software service is recomposed into a new service composition, it is effectively
like a new supersystem for that service. While this may be stretching the idea a little, the
point is that users may judge the component based on the performance of the new compo-
sition and more importantly that the component will be exposed to a different operational
profile originating from the new service composition. It may be exercised in entirely new
ways and fail.

His methods for deriving target component reliability are much simpler than in Clean-
room, as he uses simple subtraction. This may well be sufficient for a component before
it goes into testing.

Musa’s advocacy of Reduced Operation Software Components is a good rule of thumb
for service development. While an SOA service should be complete in a business sense, it
will be more reliable the simpler the interface and the fewer operations it embodies.

Like Cleanroom, Musa’s SRE strongly separates reliability growth from certification
testing. There are good reasons to use a cheaper and faster testing regime to guide
reliability growth during development and then only expensively test for certification when
it is likely to succeed. Moreover, a lack of reliability growth as evidenced by testing can
be indicative of problems with the software engineering approach being taken and so is a
good checkpoint.

One of Musa’s strongest contributions is his insistence on the primacy of the operational
profile as a means of directing testing in a highly efficient manner. In SOA, this should
serve as a warning that composing a new service out of previously reliable components
may result in a lower composed service reliability than expected because the components
have been re-purposed.

14 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

2.3 Service Oriented Approaches

There has been some work on SRE specifically for SOA but these have been far more
divergent than Musa’s SRE and Cleanroom which are both complete in themselves and
follow similar paths to certification that are different in their detailed processes.

Tsai et al[TZC+04] assert without explanation that the move to web services as op-
posed to product based software development invalidates many reliability assessment tech-
niques, including ones that assume reliability growth. They provide a novel means of
determining component reliability, basically exercising groups of competing components
through a voting engine that gives extra weight to components with higher proven reliabil-
ity, finding fault with components that don’t conform. Formulas are given for calculating
the progressive reliability of a component as reliability updates bubble through the test-
ing system. They argue that this can allow testing of new components inside operational
systems at minimal extra cost. This technique certainly has the advantages of:

• Providing an automated test oracle to validate new services.

• Testing new services under normal operating conditions

• Providing fast or even immediate feedback about component reliabilities as they are
further tested.

Some disadvantages include:

• It cannot evaluate the first service of a particular type.

• Reliability of one aspect of a component does not necessarily predict the validity of
responses given by that component for another type of query or invocation. Without
the calls made to the voting system being aligned with an operational profile, this
may result in a misleading sample and hence a misleading result. It is particularly
dangerous if an early burst of simple requests are deemed correct and so boost the
voting weight given to the new component prematurely.

• It requires the Web Services Description Language (WSDL) signatures and calling
sequence of competing services to be identical which may not be the case. The real
difficulty would be when a new service has a calling sequence that differs from similar
services. While wrappers may be able to include new services with extra or different
parameters, it is much harder to wrap a service to change its pattern of invocation
to include it in this testing.

• The authors themselves acknowledge that the approach “would not work well when
no alternative services are available”. The previous point can impact on such alter-
native service availability.

The assumption that multiple implementations of equivalent services exist is not a given
in the Defence domain. While some types of services like geospatial data are provided by
multiple suppliers, there can be significant differences between the accuracy or resolution
of the data delivered, and the WSDL interfaces and calling grammars of competing services

UNCLASSIFIED 15

DSTO–TR–2784 UNCLASSIFIED

could be quite different. Likewise, many Defence services are too complicated or monolithic
to duplicate with a different code-base - such as the PMKeys pay system or the output of
Australia’s military and civil radars.

To be able to use this technique in coalition operations, coalition partners would have
to agree identical WSDL specifications and calling sequence grammars for services. As
described above wrapping such services would only work in cases of simple parameter
divergence.

Defence and civilian government data could be accessed at lower levels of aggregation
and processing, but it is not clear where alternative services to do this currently exist.
Right now this group voting technique does offer great promise in testing new versions or
updates of an existing service for incorporation into the system.

Tsai et al. also provide formulas for calculating the combined reliability of a compo-
sition given the composition of its components. In particular, they provide a formula for
calculating the reliability of a replicated set of components which each return the same
result[TZC+04].

In his 2005 paper, Tsai argues that an issue in determining reliability in Service Ori-
ented Systems is how far back should one accept historic reliability information[Tsa05].
He also states that atomic services should have been tested by their authors who should
also provide a set of test cases, test oracles and a reliability level. A useful suggestion is
that any automatic code generated to create complex services from simpler ones using or-
chestrations or choreography9 should generate instrumentation code within those software
composition scripts.

Another paper published by different collaborators with Tsai[TEC08] is largely focused
on evaluating the reliability of automatically generated service compositions, but makes
the point that reliability data from composition execution can be used to recalibrate
reliability models and rank or re-rank compositions, services etc. It also suggests that
every party in contributing into a service composition can contribute test cases, test scripts
and evaluation mechanisms.

Wang et al[WBZC09] offer a hierarchical reliability model for SOA systems in which the
system reliability is calculated using the reliabilities of services, fault tolerance mechanisms
surrounding them, data and service composition specifications. Compositions are modelled
using Discrete Time Markov Chains.

LLAMA[PLZ+08] is a service process monitor, run-time manager and configuration
tool. It does not calculate reliabilities, but collects evidence about Quality of Service
(even for foreign services) and diagnoses causes of delays through a light weight (on the
system) Baysian network and ESB extensions, a similar system might be used to monitor
service invocations in an SOA for success or failure.

The notable contributions in this area are the concept of voting as a test oracle for
reliability testing new components, incorporating logging of success and failure in automat-
ically generated compositions and designing a system where fault tolerance mechanisms
are incorporated in the service architecture and reliability calculations.

9See section 3.

16 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

3 Orchestration vs. Choreography

A complete process for assessing and guaranteeing reliability of an SOA must deal with
service composition. This section, therefore, goes into some detail about service compo-
sition paradigms so that explanations about reliability of software composed from other
services have a solid foundation.

A major feature of SOA is that it aspires to creating new services by composing
existing services, either atomic ones (those that are a single piece of code) or those that are
themselves implemented as a composition of lower level services. The objective is not just
to reuse code and thus reduce production effort, or to have a canonical set of code managing
each type of data — although these are benefits of such an approach; but also to allow
the quick construction of new applications using these services that were not envisaged
at system design time. The advantages for Defence here in terms of responsiveness in a
battle situation are apparent. Generating new services quickly is in some ways antithetical
to providing a certifiably reliable system, so this paper will concentrate its efforts in the
area of composed applications on how to quantify and improve the reliability of such
constructions on the assumption that these compositions can and will be reused.

Service creation by composition is generally broken into two methods which are some-
times combined, they are Orchestration and Choreography. Both methods seek to combine
multiple existing services into a coherent larger service / business process. There is not
strict agreement on their exact definitions, and they are often described in contrast to
each other.

Peltz[Pel03b] gives the following definitions:

Orchestration Refers to an executable business process that may interact with both
internal and external Web services. Orchestration describes how Web services can
interact at the message level, including the business logic and execution order of
the interactions. These interactions may span applications and/or organisations,
and result in a long-lived, transactional process. With orchestration, the process is
always controlled from the perspective of one of the business parties.

Choreography More collaborative in nature, where each party involved in the process
describes the part they play in the interaction. Choreography tracks the sequence
of messages that may involve multiple parties and multiple sources. It is associated
with the public message exchanges that occur between multiple Web services.

Orchestration differs from choreography in that it describes a process flow between
services, controlled by a single party. More collaborative in nature, choreography
tracks the sequence of messages involving multiple parties, where no one party truly
“owns” the conversation.

However, many authors and practitioners would see orchestration as something to be used
primarily within a single organisation. Services created by these methods are embodied in
a language file that specifies the underlying service interactions. Given the above defini-
tions, it is possible to see how languages specifying orchestrations are generally procedural
whereas languages describing choreographies are generally declarative with the processes

UNCLASSIFIED 17

DSTO–TR–2784 UNCLASSIFIED

involved responding in an event driven manner to calls made on them. The following
quotes from various authors give a wider perspective on the differences between the two
broad ways both methods seek to combine multiple existing services into a coherent larger
service / business process:

the point of view of orchestration languages indeed, is always the orches-
trator which is the center of the system through which all the information
pass[sic].[BGLZ05]

Orchestration describes how services interact at the message level, including
the business logic and execution order of interactions under the control of a
single end point[PTDL07].

[An] analogy is the model of control for the flow of traffic at an intersection.
In this case, orchestration would involve a traffic light (controlling when each
vehicle gets to cross), while choreography would compare to a roundabout,
where there is no central control; there are only some general rules specifying
that vehicles approaching the intersection have to wait until there is room to
enter the circle [in the correct direction] [Jos07].

Choreography tracks the message sequences among multiple parties and
sources — typically the public message exchanges that occur between Web
services —An ... rather than a specific business process that a single party
executes[Pel03a].

choreography depends highly on two things: collaboration and the specifica-
tion of some general rules so that the collaboration doesn’t lead to chaos[PTDL07].

Another way of viewing this is that specifying an orchestration is much like writing
your own program, you specify all the operations and the sequential or parallel operations
including calls to other services/APIs — orchestration specifies a single (if composite) ser-
vice and the specification is a single piece of generally executable code; whereas specifying
a choreography is like defining a protocol, each party specifies a set of acceptable peers
and the stimulus/response behaviours they themselves will undertake, and a correspond-
ing set of allowable interactions and termination or error conditions that may arise based
on data. The choreography is the combination of all these individual specifications and
represents the “God’s eye view” of what is going on. Specifying the behaviour of many
services collectively constitutes a larger service, whereas each peer in the choreography is
only aware of their small role. Compared to multi-agent systems, choreography is gener-
ally less ambitious, usually a single peer’s choreography is focused on a very discrete task,
and the service endpoints comprising a choreography are generally fixed to a particular
host rather than wandering around the system.

Orchestrations are generally executed as a script in response to a call on the service it
defines on the host where that script is published as a service. Choreography descriptions
need to be interpreted by a program to generate event response automations. The set

18 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

of these automations run on each host participating in a choreography, the service inter-
face simply receives the first event in the protocol chain. Note that one fragment of a
choreography may, in fact, participate in other choreographies simultaneously. Similarly
services can concurrently participate in multiple orchestrations. This leads to the issues
of languages for creating orchestrations and choreographies.

3.1 Languages for Orchestration and Choreography

Many languages have been proposed for Orchestration and Choreography or to support
them, we cover only some of the most prominent here.

Web Services Description Language (WSDL) is a language that allows programmers
to describe the interfaces to web services using an XML format. This XML may then
be used to populate service lookup service, or otherwise be scanned by programs seeking
to automatically build service compositions. Version 2.0, which became a W3C recom-
mendation in 2007, is considerably different from 1.1 and specifies the service - the set of
system functions that are exported for access via web protocols; the endpoint or address
of each service; the binding10 or interaction pattern (e.g. Remote Procedure Call) that it
offers; the interface or definition of the set of operations that can be performed and what
messages are used; the operations or method signatures for each “call”; and finally the
types of data sent and received described by XML schema notation[WSD11].

The Business Process Execution Language for Web Services (BPEL4WS) or just BPEL
was designed by BEA, IBM, SAP and Siebel Systems to model the behaviour of Web
Services in a Business Process interaction. It is generally regarded as both an orchestration
language and a choreography language depending on the level of its use. Its syntax is
XML based, making it hard for humans to read or write. WS-BPEL 2.0 is a OASIS
(Organization for the Advancement of Structured Information Standards) standard as of
2007[OAS07]. Some aspects of BPEL relate to orchestration while other aspects relate
to choreography. Executable processes in BPEL reference WSDL signatures of existing
services to build private work flows using a common overseer - the BPEL script being
executed (orchestration) whereas abstract processes describe public message exchanges
between executable processes (choreography). Language constructs allow for looping and
branching based on data and also allow transactions (including transaction scope) and
exception handling to be specified as well[Pel03a].

Other languages which seemed to have lost momentum are WSCI the Web Services
Choreography Interface which again provides a collaboration extension to WSDL and the
Business Process Management Language (BPML) which is an orchestration language.

WS-CDL or Choreography Description language, like the abstract processes in BPEL
is not directly executable. This language has been proposed by W3C, while some in the
industry are committed to BPMN the Business Process Model and Notation which is
graphic notation for modelling business processes but which can’t be easily mechanically
translated to or from BPEL[BPM11].

10WSDL uses binding to mean the form of interaction pattern, in this paper we use the term in its more
common computing usage of resolving a name to an entity such as a service, variable, communication
endpoint or address.

UNCLASSIFIED 19

DSTO–TR–2784 UNCLASSIFIED

To create composed services in a working SOA system, there is a need to combine
local services into orchestrations and / or mutually enact the local services described in
choreographies and check their overall validity. Researchers such as Diaz Et. Al. are active
in this area and advocate deriving a timed automata from the WS-CDL description of
a composition, validating the timed automata with a model checking engine, and then
deriving WS-BPEL code from the timed automata[DCP+06].

While both orchestration and choreography in the most general case may want to com-
pose services in sequence or in parallel, the languages performing the composition would
achieve this in different ways. An orchestrating process would call other services either in
sequence or asynchronously but in so doing the called services would be subordinate to
the orchestrating process. In fact it would be up to the orchestrating process to take the
results from one service call and pass them on to others in the sequence. Conversely, in
a choreography, all services described by language fragments that collectively constitute
the choreography would be instantiated in parallel. Whether the flow of execution for a
particular call to that choreographed service occurs sequentially or with parallel execution
would depend on the behaviour of the component services. The only way for a single call
to a choreographed service to result in multiple threads of execution would be for some
component service of the choreography to make multiple asynchronous calls to other peers
in the choreography.

In general, orchestration languages (or parts thereof) tend to be executable while
choreography languages (or parts thereof) tend to be declarative - they say what has
to be done without explicitly saying how it should be done. There is still considerable
dissatisfaction with the state of the art in these languages. For instance: “This sharp
distinction between orchestration and choreography is rather artificial and the consensus is
that these would coalesce in a single language and environment[PTDL07].” Many authors
point out that BPEL and other popular orchestration/choreography languages lack the
underlying mathematical rigour to do a full correctness analysis on the protocols being
described including aspects of timing, channel allocation and other issues. Indeed several
authors have proposed their own extensions to such languages in order to facilitate this
goal[CYZQ08, KWH07], others point out that not all the choreography models embodied
in these languages are translatable to a set of local implementations[JHG07].

While other implementations of SOA exist, such as ones using message queues or
other publish subscribe architectures such as Data Distribution Service (DDS) [OMG]
these don’t come with their own orchestration and choreography languages.

3.2 ESB and Service lookup

All services in an SOA have to be identified and located before they can be correctly
addressed through the ESB and used.

The main challenge of service discovery is using automated means to ac-
curately discover services with minimal user involvement. This requires expli-
cating the semantics of both the service provider and requester... Achieving
automated service discovery requires explicitly stating requesters’ needs —

20 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

most likely as goals that correspond to the description of desired services —
in some formal request language.[PTDL07]

For us, our major concern with respect to reliability will be at what stage services are
bound to choreography or orchestration specifications. There are a spectrum of possibili-
ties but the extreme versions of early and late binding are:

• The implementation, version and indeed which instance of perhaps replicated copies
of each web service is hard wired into the script so that there is no flexibility at
run-time over which service is called (very early binding) and,

• For every execution of a choreography or orchestration script, a potentially different
service instance is selected dynamically to fulfil the role of the service described in
the script (very late binding).

Some examples will occur midway through this spectrum, where some aspects of the
service chosen are fixed e.g. implementation or service location (local or otherwise) while
the other aspects are chosen dynamically. Hauzeur[Hau86] gives good examples about
how the rigidity of a naming scheme that locks down component selection can reduce
the possibilities of what a system can achieve. As SOA experience and practice matures,
common service lookups will become more sophisticated and we can expect more runtime
choice as to which service a particular run of a composed service binds to. This becomes an
issues in determining SOA reliability because the more freedom that exists in which services
are bound into a choreography, the less frequently that particular service instantiation
will have been tested in practice. The past evidence available about composed service
reliability becomes more scattered and therefore less statistically significant when more
dynamic freedom exists in choosing component services for each run of the composed
service.

While this paper does not concern itself with the general details of service conformance
evaluation involved in selecting a suitable instance of a service for an execution, we will be
advocating an approach between these extremes which still allows some run-time flexibility
but attempts to maximise the reuse of proven service instance combinations and hence
maximises the reliability of the service composition so formed.

3.3 Other service composition issues affecting reliability

Peltz[Pel03a] states that “asynchronous service invocation is vital to achieving the reliabil-
ity and scalability that today’s IT environments require.” This means that any assessment
of functional reliability for SOA must be able to cope with parallel processes. He also states
that “The process architecture must also provide a way to manage exceptions and trans-
actional[sic] integrity.” Due to the transaction mix many transactions may have to fail,
roll-back and be retried. Such outcomes are the result of normal resource contention, and
while they should be minimised they should not be regarded as a failure when assessing
reliability of the composition that initiated the transaction.

Other important issues in composing services includes the need to handle multiple
versions of services as they are debugged or upgraded to introduce new features. While

UNCLASSIFIED 21

DSTO–TR–2784 UNCLASSIFIED

Wang and Cui have given a model for determining which other processes in a system may
be affected by such changes[WC10], we are interested in how this will affect their reliability
and so wish to develop procedures or software components to perform such updates in a
controlled manner that maximises reliability during the change over.

We do not consider dynamically generated service composition scripts in this paper.
Automatically deriving such compositions is still a significant and open area of research
e.g. “Despite all these efforts, composition of web services still remains a highly complex
task, and automatic composition of web services is a critical problem[MA07].”, and even
now there does not appear to be any strong agreement on a way forward. There are
already significant challenges in providing reliability assessment for human crafted service
compositions, so we will confine our efforts in this paper to that task which is a prerequisite
for the more complex problem as well.

4 Applying Software Reliability Engineering to

SOA

Just because SOA is intended to allow the rapid development of new applications from
existing components through service composition, there is no reason to abandon good
software engineering practice. In fact the more agile one needs to be, the more one should
be able to rely on a solid Software Engineering foundation to enable such agility. This
applies to Software Reliability Engineering as well: development cannot be agile if it gets
bogged down in tracking down the distant and obscure root causes of many bugs.

In this section we go through the sequence of steps we see as most useful in devel-
oping a component or composition for an SOA (which for the time being we assume is
itself reasonably reliable) and see how the various processes expounded in section 2 apply
specifically to the SOA context. We are fortunate to have a variety of approaches which
we can mix and match in order to obtain some of the most suitable solutions.

Specification A specification of the service is invaluable to clarify development and to be
clear about a service’s behaviours. Box specifications such as those recommended in
Cleanroom Software Engineering allow for very clear indications of expected outputs
for each input and as such lay a foundation for automatically generating test data.
Neither Tsai et al’s weighted voting approach, nor Wang et al’s hierarchical reliability
model, nor LLAMA focus on specification.

Usage Model / Operational Profile Both Cleanroom and Software Reliability Engi-
neering insist on a means of determining which operations are most used in a system
in order to ensure that testing covers the likely actual usage of the system. Clean-
room’s Usage Model is its usage Markov chain as described in section 2.1 whereas
Musa’s Software Reliability Engineering uses Operational Profiles. Markov chain
models together with Cleanroom type box specifications can be used to automati-
cally generate test data with the correct coverage for expected usage.

We note that it is useful to create a formal specification and usage model such as
those advocated by Musa or the Cleanroom methodology even for software that

22 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

has come from somewhere else or is legacy code. As odd as this sounds, doing so
provides a way to automatically generate tests for the foreign or legacy software as
it is now intended to be used. As pointed out earlier different faults may be revealed
by different usage and prior testing is advisable. Likewise, it is advisable to create an
updated usage model for a component for its new use when it is “conscripted” into
a new service composition. A good hierarchical SOA monitoring system will be able
to log the calls to the newly constructed composed service as well as to its existing
constituent components so that an updated overall usage model can be calculated
for the component (by multiplying through the macro composite service usages and
the per composite service usage models). A specification and usage model for bought
software can also provide a way to do acceptance testing of the Software.

Creation of a usage model or operational profile is also a good time to check if any
operations can be eliminated to simplify the system and so reduce the chances of
residual faults.

Determine reliability objectives This may be problematic for components that are
being built bottom up, rather than from true user requirements. A typical example
of this is designing service infrastructure, e.g. a database service, where the need
for some services is obvious in the SOA ecosystem but it is less obvious what exact
form each service will take and how precisely different higher level services and
applications will use them. However, it is still useful to make an effort here as it
can inform when is the earliest time the new component should be released into the
SOA ecosystem. Musa offers a simple subtractive process to determine necessary
component reliabilities, Cleanroom offers a more mathematically rigorous deduction
arising for the usage Markov chains. It is unclear to the author which would be
better, and this may well depend on context.

Determine a common unit of measure for reliability This is an interesting ques-
tion in an SOA and is discussed in section 4.2.

Plan and develop tests If a specification and usage Markov chain has been developed,
test generation can be automated saving considerable developer time.

Perform testing This will hopefully be done automatically either using the usage Markov
chain type testing, or by the group voting method espoused by Tsai et al. Either
way the results should be automatically recorded in the system to accumulate evi-
dence for reliability. It is important that testing include both testing of operations
and significant loading levels beyond the expected system load. Regression testing
should also be performed.

This means the logging service has to be sophisticated enough not only to log the
success or otherwise of the macro composition, but also each of its constituent com-
ponents recursively. This also requires the logger to have a clear idea about which
particular instance of each component service including location and software version
was invoked.

Calculate and update reliability levels More so than in static systems, much of the
data on reliability of an SOA will come from experience from fielded components.
Every in-field use of a service can be considered a test. As such testing progresses,

UNCLASSIFIED 23

DSTO–TR–2784 UNCLASSIFIED

the reliability levels of any composition being exercised and its components should
be updated. This is the only way that reliability data on ad hoc and machine de-
rived service compositions can be accumulated, although estimations of reliability for
such service compositions can be derived from their components’ existing reliability
records. There should be a reliability database that includes both an estimated re-
liability entry and a certified reliability entry. Exactly when and how data obtained
through normal system operation, or through Tsai style group testing should be
deemed to certify a reliability is an area for further investigation. These methods of
evidence accumulation are essentially uncontrolled. Clearly the production system
defines the true rather than extrapolated or expected operational/usage profile, but
the question that must be answered is “What is a sufficient sample size?” Specific
certification testing as per Cleanroom or Musa’s SRE immediately qualifies as a
certified level once obtained.

Deploy Certified Software This should usually be the only way that software gets
deployed, however in war fighting situations Defence may wish to lower the bar
somewhat to allow for agile responses. Even so, some minimum levels of component
reliability should be enforced so that the overall system remains stable under the
usage conditions for which they were certified.

Verify Deployed Reliability It is important to continue to log successes and failures
in the field, not only for debugging and software improvement, but also to ensure
that our reliability modelling and decision processes are scrutinised and improved.

As composed services are themselves services, the same advice as above should be
applied to them as well. They should have a specification, usage model etc. Even if done
after the event of war fighting, they will be useful in the future. They should also be tested
as a unit because the script itself can introduce errors on top of otherwise correct services.

4.1 A layered approach to Certifying the SOA

In systems as large as a Defence wide SOA, it is neither practical nor economic to cer-
tify the system as a whole. The task would be enormous, error prone and the results
unreliable. A better and tractable approach is to view the Defence wide SOA as a set of
separate interacting applications, which intersect each other as they use common services
and infrastructure. By treating these services and applications as a layered system, with
layers defined by the direction of calls between them, we can gradually certify the relia-
bility of each service or application in the system according to the known reliabilities of
the services they themselves call. In this way Defence also has a more useful reliability
measure because it will give a reliability for the specific applications and services that they
seek to use in any deployment, making decisions clearer.

4.2 Certifying from the core out

Figure 3 shows a generic SOA System including its innermost element, the operating
system at the centre. This figure is a logical representation, and the SOA itself would

24 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

 1: O/S

Processes
Display

2: SOA Core

 ESB

Service Lookup

MsgsLogs

Srvc A

Srvc B

Srvc C

Srvc D

Srvc E

 Srvc F

Storage
Networking
Installation

Figure 3: Layered Services in an SOA

consist of many nodes, each with its own operating system. In the figure, each layer
shown represents the union of that layer across all nodes of the physical SOA. Ideally the
operating system should be as minimalist as possible to maximise reliability by reducing
the amount of code that may contain faults. For an SOA it would necessarily contain
installation, networking, process (and within node inter-process communication/calling)
components and optionally display and storage components which would only be included
on nodes that required them. In figure 3 this constitutes layer 1 and should be the first
element of the SOA to be certified.

Following that, the services comprising the SOA Core can be added to the system. One
possible minimal set of these would be the messaging/ESB, logging and service lookup
functions. This is layer 2 of the system and its reliability can be certified using the results
obtained from certifying the operating system.

Together, layers 1 and 2 constitute the core infrastructure of the Defence SOA and
should be certified separately because it is fundamental to system operation and will need
to be rolled out first in any case. It is very important that a software specification and
usage model11 be developed for the core functionality, even though at first this will only
be an informed estimate. This will ensure the highest initial level of reliability for the
core infrastructure by focusing development effort on the most used parts of the core
infrastructure. The operations used by the layer two functionality will inform which calls
in the operating system are the most frequently used. Clearly the usage model for the
core infrastructure will change over time as more applications/systems are added to the
infrastructure and estimates of usage are revised with real data. However, this is no excuse
for not developing an initial usage model. As the particular SOA ecosystem develops, the
proportion of the core functionality usage model which is derived from estimates as opposed
to measurements and past experience will continue to fall.

The measure of software reliability needs to be compatible among the core infrastruc-
ture and the systems built upon it. There are basically two possible types of measures:

11Usage Markov chain or Operational Profile

UNCLASSIFIED 25

DSTO–TR–2784 UNCLASSIFIED

• Failures per time period (e.g. failures/hour)

• Failures per top level operation invocation/footnoteTop level for the application, or
top level for the infrastructure.

While core infrastructure should be continuously operational, other systems may be
used sporadically even if continuously turned on. For this reason the Author currently
conjectures that measuring SOA reliability in failures per top level invocation will give a
more meaningful measure against which to define the require reliability as we are gener-
ally uninterested in failures that might occur when we are not actively using the system.
Moreover, this measure scales well when we distinguish between reliability during non-
use, off-peak and peak usage times. This is particularly true for different modes of system
operation. A change in system mode may result not only in a different intensity of invo-
cation, but in a different operational profile as various tasks in the overall SOA System
are reprioritised.

4.2.1 Certifying individual Services

Each individual service on a Defence system developed on the SOA infrastructure should
be tested as a whole using its own specification and operational profile. In figure 3, we
can see what is effectively layer 3 consisting of services A, B, C and D. This layer is not a
closed circle because its components are optional. Because of this, layer three would not be
certified as a whole, but each of its services would be certified individually using the known
reliability of the SOA core. Note that since services C and D are not independent but
call each other, they would need to be certified as a group yielding a common reliability.
This provides extra motivation for separating concerns into layers in an SOA System
recognising that sometimes software functions are intertwined although best programmed
separately. In this figure, service E represents a fourth layer and its reliability can be
certified once services A and B have been certified. Similarly it is logical to certify service
F after services E and C/D are certified.

In effect services should be certified from the core out, or in the case of remote services
all services called by the service in question should be certified before that service itself
is certified. This ordering maximises the efficiency of software development by ensuring
that each service is being built on a solid foundation and developers are largely debugging
problems in their own code, not others’.

As service reliability and behaviour may be highly dependent on network connectivity
in an operational system, reliability may need to be calculated both for the case where
all parts of the individual system are local to the caller and for the case where some
functions are performed remotely. This would depend on the nature of the service and the
possibilities for meaningful disconnected operation. Any failures during certification must
distinguish whether the failure occurred due to a connectivity problem, or a fault intrinsic
to one of the services involved.

26 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

4.3 How we might estimate reliability of Service Composi-
tions

Composed reliability can be estimated by applying Markov usage models of the service
composition, treating each called service as a component. Like all other systems, reliability
of service compositions can only be certified by applying certification testing using a valid
operational profile. Evidence of in field usage or group based testing can be accumulated
to provide an estimated reliability, but as stated before when this should be regarded as
a large enough sample to call it statistically representative of the real operational profile
and thus qualify as certification is another question.

In section 4.2.1 we advocated an ordering for attempting service reliability certification.
This ordering also enables estimation of the maximum reliability of a new service given
the known reliabilities of the services it depends on using the Markov chain approach
described in section 2.1. Such an estimation using only the expected calling frequencies
of existing services can inform the developer whether there is a decent chance of making
the new service reliable enough or whether development efforts are currently best spent
increasing the reliability of services it depends on. In such a case it will also show which
of those services needs to be improved first.

4.4 Performing Upgrades

In an operating SOA good governance, both human and embodied in system policies, must
be used to ensure that upgrades of components and services are both possible and keep
the system relatively stable during the upgrade. The following protocol should be applied
for upgrading services:

• Replacement components have to meet minimum reliability levels through auto-
mated testing before they are eligible to begin testing in live systems.

• A replacement component should be group tested in the Tsai style in live systems
and shown to approach the reliability levels of the current component before it is
eligible as a replacement.

• The replacement component is then registered and publicly published in the White,
Yellow and Green pages and is chosen by default over the previous version once it
has passed these tests. This allows for rapid accumulation of reliability data.

• If the node is running in War/High Reliability mode, the component will not be
selected for a composition unless the user of the composition script specifically re-
quests that the newest published components be used or accumulated data shows
that it meets or exceeds the established reliability levels of the previous version.

This process must be supported by appropriate logging[Pil12] so that field evidence is
accumulated about the replacement component.

UNCLASSIFIED 27

DSTO–TR–2784 UNCLASSIFIED

4.5 Certifying Legacy Systems as Components

The potential to incorporate legacy systems as wrapped12 services in an SOA is seen as
having several potential benefits such as:

• Extending the operational life of a legacy system

• Extending the accessibility of a legacy system by making it widely available

• Extending or altering the functionality of a legacy system by incorporating it within
a larger service.

Most but not all legacy systems have been operational for a significant time. Usually
they have come to be used for purposes not fully envisaged at the time of their construction.
Moreover if they are being incorporated into an SOA they are likely to be used in a
different way than they have been either in frequency of use or in the calling pattern they
are subjected to.

Like all reliability measurements discussed in this paper, the reliability measurement
and certification of a wrapped legacy component must be done in with respect to a speci-
fication and a usage model. With legacy systems the system’s original specification may
no longer exist, may not be available, or a written specification may never have been
produced. It is also unlikely that a usage model was ever produced.

The solution is to write a new specification for the legacy component, not for what the
legacy system has done, but for what the legacy system will do - and is expected to do - in
the SOA. At the same time a usage model must be developed for the intended/expected
usage of the legacy system as a component.

Not only will this ensure an accurate reliability measure and certification for the legacy
system’s current purpose, it is highly likely to pick up any misunderstandings about the
function of what is often effectively a black-box system. These misunderstandings may
become evident either during the specification process as rigour clarifies thinking, or they
may manifest as errors during the certification testing.

Note that the newly developed specification for the legacy system being wrapped does
not need to specify all its native behaviours, only the input and output behaviours expected
from the portion of the the legacy system’s interface that is being wrapped by the SOA
service. As such, the work required to produce such a specification is limited and feasible.

This specification and the associated usage model of the wrapped service can be used
to automatically generate a test suite which can be used to measure and certify the systems
actual reliability for its current purposes within the SOA.

As counter-intuitive as it may first appear, the above reasons show that specifying a
legacy system after it already exists makes perfect sense.

12Wrapped in interface code to facilitate their incorporation into the SOA so as to appear as a service.

28 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

5 Implications for ADF procurement

In order to establish and maintain the reliability of SOA based systems delivered to the
ADF, Defence should accept incremental delivery of the system functionality but with
strict requirements on the reliability of the entire system thus far delivered at each incre-
ment. This contrasts with traditional Defence acquisition and ensures that SOA reliability
starts high and remains high. Keeping reliability high speeds development and allows por-
tions of functionality to be deployed earlier than would otherwise be possible. It also has
the distinct advantage of increasing return on investment because returns begin sooner.

Certification testing against agreed operational profiles, specifications, and confidence
levels provides a very clear method for suppliers to know when to offer deliverables to the
ADF, and for the ADF to determine whether to accept the deliverables.

Operating systems are a special case here. The ADF is somewhat constrained by the
limited number of operating systems available. However a usage model can be developed
for the smaller subset of an operating system called on by an SOA (process control, com-
munications and networking, security) and develop an Operational Profile / Usage Model
for this subsection of the Operating System’s API. This can be certified to a measured level
of reliability and this measure can be used in conjunction with known malware and secu-
rity threats to either choose between operating systems or to decide when a new version
of an operating system is mature enough to allow into the SOA.

6 Recommendations to enable SOA SRE

Software Reliability Engineering is based on a mature set of theories that have been shown
in practice to produce significant improvements in software reliability at affordable cost in
industry software development and in the U.S. DoD[DPC03]. As such, Australian Defence
should adopt a form of SRE for its SOA systems procurement, both to guide development
of bespoke software and as a test for acceptance for bespoke and off-the-shelf software.
The following items describe how this can be done:

• One of the clearest paths to deployment is to implement functionality incrementally
starting with the core functions and only release each increment when the reliability
of that release set is certified high enough for deployment. This path ensures system
stability and earliest possible access to functionality on an incremental basis. It
also assists projects to accurately report their progress by allowing them to say
that a particular percentage of the project’s (sub) functions are certified to a given
reliability.

• The deliverables for components should include their specifications and some form
of usage model. Ideally these would be in the form of Box specifications and Markov
chain usage models so they can be used to automatically generate test suites.

• Services that modify persistent data, rather than simply returning a result, such
as updating a database should include a testing mode in which either the updates
do not occur or the data is stored in an separate testing database. This allows the

UNCLASSIFIED 29

DSTO–TR–2784 UNCLASSIFIED

service to participate in testing without contaminating production data. Another
way of testing services that have side effects on real infrastructure would be to stand
up a separate test instance of the service. This would have the advantage of not
altering the code of the service being tested at all but would mean the tests would
be conducted without the load from other users of the service so interaction effects
would not show up unless included in the tests themselves.

• That Markov-chain usage based testing be adopted in Defence for SOA and other
systems. For systems delivered to the US DoD, this type of testing allowed auto-
mated test oracles to be developed allowing automated testing, and caused a ten
fold reduction in defects per 1000 lines of code[DPC03].

• As coalition operations move towards interoperability through sharing SOAs, it
would be advantageous to agree early on standard interfaces for each type of service
including WSDL interfaces and calling grammars. This will allow maximum usage
of each country’s service by others and allow the services to be substitutable for
testing and war fighting purposes. The same is of course true for all foreign APIs,
but there is perhaps more room for early negotiation on common data structures
and API structure with Defence’s Coalition partners.

• Some mechanism to provide data provenance should be a core part of the system
specification. This is important for ensuring faults are not caused by bad or inap-
propriate use of data. It is particularly important to be able to correct databases by
expunging data that has been inserted into the database by a faulty service.

• As part of SOA governance, the software repository should also include the following
data for all services:

– Specifications of the service.

– Usage models for all contexts in which the service is known to be used. (These
may be lodged by parties other than the software developers.)

– Provenance of the service: who wrote it, what techniques were used, how the
specification was validated etc.

– For legacy GOTS and COTS software, a specification describing expected be-
haviour of the APIs of the software used should still be written (even after
the event) to provide a foundation for testing along with the associated usage
model.

• A key motivation given by CIOG for adopting SOA was to enable software reuse and
by implication to disaggregate applications so that their component services could be
reused to build other applications rather than each application reinventing the wheel.
To facilitate such reuse, application developers and automated processes that build
orchestrations and choreographies must be confident of each component’s behaviour
and reliability and hence that they are “fit for purpose” for a particular usage. The
specifications mentioned, and to some extent the usage model provides a “proof of
behaviour” under expected circumstances. To provide proof of reliability, the SOA
system/governance must maintain a database of reliability levels for each version
of a component. Initially this level may be an estimate based on past performance

30 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

of the software supplier or the software development techniques used, later as more
tests are performed against the usage model and specification this reliability can be
measured within the given usage context. Initial testing and limited deployment in
the new usage context has to rely on previous usage contexts as an approximation
of reliability. Once testing or operational reliability data specific to the new usage
context can be accumulated there is a corresponding increase in the confidence we
have in a particular reliability level for that component version and usage.

• SOA governance should include minimum reliability levels for different types of ser-
vices in its SOA systems. It can be hard for programmers to estimate the needed
reliability for whole systems and guidelines would avoid a lot of indecision. There
should be a variety of levels for each type of service that should apply as it pro-
gresses from development to test, to transfer onto production machines and finally
into deployment and advertising as an available service in the White, Yellow and
Green Pages services for the SOA.

• A service placed in the lookup pages should be able to be marked experimental so
it can be fielded for testing, but not accidentally chosen as a subcomponent until it
has been certified. This allows field testing as a shadow service where every call is
routed to both the existing service and its replacement and outputs can be compared
to validate the new service.

• Defence SOA nodes should have at least three system modes:

Test mode The hardware is available for running as yet unreliable, lightly tested
components for the purposes of testing. It is acknowledged that there is a possi-
bility that the testing may bring down the local part of the SOA infrastructure.

Normal mode Only software/services that have passed minimum reliability tests
are available for execution.

War or High Reliability mode Only software/services that have passed more
stringent software certification or which have been authorised to run to obtain
a war fighting advantage despite their reliability risk are available for execution.

Software running on a test node should be allowed to call software on a normal
mode during the course of its testing. Allowing these modes to exist simultaneously
on different nodes in the broad ADF SOA infrastructure provides a path for new
Services and SOA components to climb the reliability ladder until they are certified
fit to deploy.

7 Conclusions

At this point we can answer the questions we posed at the beginning of this paper:

• The integrated grid of Defence SOA platforms may be sprawling; how can one talk
about reliability for such a system? We break it down as described above and certify
the core infrastructure and each significant system built on top of it separately.
Effectively, an application system is certified from the SOA core outwards as each

UNCLASSIFIED 31

DSTO–TR–2784 UNCLASSIFIED

service is certified. The network is treated as just another component of the system,
it has a separately measurable reliability.

• How can one be sure a Defence system built on SOA is reliable enough to deploy? By
using good software reliability engineering practices and only deploying reliability
certified systems.

• Some components of Defence SOAs will be wrapped legacy systems, how can and
should these be certified? The best way to certify these is to develop a new specifi-
cation and operational profile for them that corresponds to our current intended use.
As counter-intuitive as creating a new specification for an old and most likely un-
maintainable existing piece of software may seem, this method importantly ensures
that its reliability is known for its new uses as well as its old ones. This technique
is a significant contribution to our capacity to use legacy systems with confidence.

• How can one deal with components built and or maintained by others and still get a
reliable system? Clearly if a component is of too low reliability it should be rejected.
However, with software reliability engineering practices we can determine its actual
reliability for our user as described for legacy systems, and we can compare that
with a Markov usage model analysis of component reliabilities needed to meet the
reliability objective of the larger system. The component should only be accepted if
it meets or exceeds that requirement.

• What can be said about the reliability of services created by composing other ser-
vices? The reliability of composed services can be measured and certified just like
any other system.

• How do multiple versions of the same component affect reliability and the calculation
and certification of reliability? Each version will have its own inherent reliability, and
its own level of currently certified or evidenced reliability. If the versions are inde-
pendently authored, it is simply a matter of choosing the one with higher reliability;
however, most often the versions will be related with the newer version offering some
feature enhancement or bug fix. In the latter case the objective is to raise the newer
version to an acceptable level of certified reliability as soon as possible. Section 4.4
describes a systematic means to do this using the older component as a test compar-
ison, and to preferentially select the newer component where possible to accumulate
statistical evidence on its reliability for deployment.

• What can one say about the reliability of compositions that include foreign services?
These should be analysed in the normal way. The fact that the service is foreign
does not affect its reliability. It does however affect its time to correction if a bug
is discovered by us during testing. As such it is important to have the ability to
submit good bug reports[Pil12] and to have an agreement with the service supplier
about correcting faults in a timely manner.

This paper has answered many questions about ensuring an adequate level of sys-
tem and application reliability for the Defence SOA. The ability to do so is strongly
predicated on adopting proven software reliability engineering techniques and it is highly
recommended that Defence adopt such techniques both in its software development and
software procurement policies.

32 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

While this paper has outlined how existing SRE techniques would translate to SOA,
detailed elaboration of them will be necessary to create a methodology with which to
pursue SRE in SOA development and acquisition.

Acknowledgements

The author would like to thank Steven Wark and Derek Henderson for their helpful review
comments.

References

BGLZ05. Mario Bravetti, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. Sup-
porting e-commerce systems formalization with choreography languages. In
Proceedings of the 2005 ACM symposium on Applied computing, SAC ’05, pages
831–835, New York, NY, USA, 2005. ACM.

BPM11. Wikipedia entry for Business Process Model and Notation, 2011.
http://en.wikipedia.org/wiki/BPMN Viewed 2011-05-17.

CIO10. CIOG. Single Information Environment (SIE): Architectural Intent 2010. Tech-
nical Report DPS: DEC013-09, Commonwealth of Australia, Department of
Defence, May 2010.

CoA11. Department of Defence Commonwealth of Australia. Chief information officer
group instruction no. 1/2011. Departmental dissemination., May 2011.

CYZQ08. Chao Cai, Hongli Yang, Xiangpeng Zhao, and Zongyan Qiu. A formal model
for channel passing in web service composition. In Services Computing, 2008.
SCC ’08. IEEE International Conference on, volume 2, pages 495 –496, july
2008.

DCP+06. G. Diaz, M.E. Cambronero, J.J. Pardo, V. Valero, and F. Cuartero. Automatic
generation of correct web services choreographies and orchestrations with model
checking techniques. In Telecommunications, 2006. AICT-ICIW ’06. Interna-
tional Conference on Internet and Web Applications and Services/Advanced
International Conference on, page 186, feb. 2006. Very good high level sum-
mary of WS-CDL.

DPC03. S Dalal, J Poore, and M Cohen. Innovations in Software Engineering for
Defense Systems. The National Academies Press, Washington, D.C., 2003.
http://www.nap.edu/catalog/10809.html.

Fis09. Neal A. Fishman. Viral Data in SOA: An Enterprise Pandemic. IBM Press,
2009. ISBN-13: 978-0-13-700180-4.

Hau86. Bernard M. Hauzeur. A model for naming, addressing and routing. ACM
Trans. Inf. Syst., 4:293–311, December 1986.

UNCLASSIFIED 33

DSTO–TR–2784 UNCLASSIFIED

JHG07. Li Jing, Zhu Huibiao, and Pu Geguang. Conformance validation between chore-
ography and orchestration. In Theoretical Aspects of Software Engineering,
2007. TASE ’07. First Joint IEEE/IFIP Symposium on, pages 473 –482, june
2007.

Jos07. Nicolai M. Josuttis. SOA in Practice. /Theory/In/Practice. O’Reilly, 1005
Gravenstein Highway North, Sebastopol, CA 95472, 2007. ISBN-13: 978-0-
596-52955-0.

KWH07. Zuling Kang, Hongbing Wang, and Patrick C.K. Hung. Ws-cdl+: An extended
ws-cdl execution engine for web service collaboration. In Web Services, 2007.
ICWS 2007. IEEE International Conference on, pages 928 –935, july 2007.

MA07. Sun Meng and Farhad Arbab. Web services choreography and orchestration in
Reo and constraint automata. In Proceedings of the 2007 ACM symposium on
Applied computing, SAC ’07, pages 346–353, New York, NY, USA, 2007. ACM.

MIO87. J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement,
Prediction, Application. McGraw-Hill Book Company, 1987. ISBN 0-07-044093-
X.

Mus04. John D. Musa. Software Reliability Engineering: More Reliable Software
Faster and Cheaper. Author House, 1663 Liberty Drv., Suite 200, Bloom-
ington, Indiana 47403, 2nd edition, 2004. ISBN: 1-4184-9387-2 Order from
http://www.authorhouse.com.

Nik02. A. P. Nikora. Casre 3.0 users guide. Program and Users Guide downloadable
from http://www.openchannelfoundation.org/orders/index.php?group id=250
Viewed Nov 2011, 2002.

NL05. Eric Newcomer and Greg Lomow. Understanding SOA with Web Services.
Addison-Wesley, Boston, MA, 2005.

Nyg07. Michael T. Nygard. Release It! Design and Deploy Production-Ready Software.
Pragmatic Programmers LLC, http://www.pragmaticprogrammer.com, 2007.
ISBN: 978-0-9787-3921-8.

Oas06. Reference model for service oriented architecture, October 2006.
http://docs.oasis-open.org/soa-rm/v1.0/.

OAS07. Web services business process execution language version 2.0, April
2007. OASIS Standard http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html.

OMG. Omg data distribution service portal. Website. ”Viewed August 2012”.

Pel03a. C. Peltz. Web services orchestration and choreography. Computer, 36(10):46 –
52, Oct. 2003.

Pel03b. Chris Peltz. Web services orchestration and choreography, June 2003.
http://soa.sys-con.com/node/39800 viewed Dec. 2011.

34 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2784

Pil12. Michael Pilling. Debugging and logging services for defence service oriented ar-
chitectures. Technical Report DSTO-TR-2664, DSTO, Department of Defence,
PO Box 1500, Edinburgh SA 5111, Australia, 2012.

PLZ+08. Mark Panahi, Kwei-Jay Lin, Yue Zhang, Soo-Ho Chang, Jing Zhang, and
Leonardo Varela. The llama middleware support for accountable service-
oriented architecture. In Proceedings of the 6th International Conference on
Service-Oriented Computing, ICSOC ’08, pages 180–194, Berlin, Heidelberg,
2008. Springer-Verlag.

PMM93. J.H. Poore, Harlan D. Mills, and David Mutchler. Planning and certifying
software system reliability. IEEE Software, 10(1):88–99, January 1993.

PSRF09. Larry Pizette, Salim Semy, Geoffrey Raines, and Steve Foote. A per-
spective on emerging industry soa best practices. CrossTalk The Jour-
nal of Defense Software Engineering, pages 29–31, July / August 2009.
http://www.stsc.hill.af.mil.

PTDL07. M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented
computing: State of the art and research challenges. Computer, 40(11):38–45,
Nov. 2007.

PTLP99. Stacy J. Prowell, Carmen J. Trammell, Richard C. Linger, and Jesse H. Poore.
Cleanroom Software Engineering: Technology and Process. SEI Series in Soft-
ware Engineering. Addison-Wesley Professional, 1999. ISBN-10: 0-201-85480-5,
ISBN-13: 978-0-201-85480-0.

Smi90. Connie U. Smith. Performance Engineering of Software Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1990.

SOA06. Wikipedia entry for Service-Oriented Architecture, 2006.
http://en.wikipedia.org/wiki/Service-oriented architecture Viewed 2011-
05-17.

SW01. Connie U. Smith and Lloyd G. Williams. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley Professional,
2001. ISBN-10: 0201722291, ISBN-13: 978-0201722291.

SW04. Connie Smith and Lloyd Williams. Software Performance Engineering, chap-
ter 16, pages 343–365. Springer US, 2004. 10.1007/0-306-48738-1 16.

TEC08. Wei-Tek Tsai, Jay Elston, and Yinong Chen. Composing highly reliable service-
oriented applications adaptively. In Proceedings of the 2008 IEEE International
Symposium on Service-Oriented System Engineering, pages 115–122, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

Tsa05. W. T. Tsai. Service-oriented system engineering: A new paradigm. In Pro-
ceedings of the IEEE International Workshop on Service-Oriented System En-
gineering (SOSE), pages 3–6, 2005.

UNCLASSIFIED 35

DSTO–TR–2784 UNCLASSIFIED

TWZ+07. Wei-Tek Tsai, Xiao Wei, Dawei Zhang, Ray Paul, Yinong Chen, and Jen-Yao
Chung. A new soa data-provenance framework. In Autonomous Decentralized
Systems, 2007. ISADS ’07. Eighth International Symposium on, pages 105 –
112, march 2007.

TZC+04. W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao. A software
reliability model for web services. In The 8th IASTED International Conference
on Software Engineering and Applications, pages 144–149, 2004.

WBZC09. Lijun Wang, Xiaoying Bai, Lizhu Zhou, and Yinong Chen. A hierarchical re-
liability model of service-based software system. In Computer Software and
Applications Conference, 2009. COMPSAC ’09. 33rd Annual IEEE Interna-
tional, volume 1, pages 199 –208, july 2009.

WC10. Mi Wang and LiZhen Cui. An impact analysis model for distributed web service
proces. In Computer Supported Cooperative Work in Design (CSCWD), 2010
14th International Conference on, pages 351 –355, april 2010.

WP92. J.A. Whittaker and J.H. Poore. Statistical testing for cleanroom software en-
gineering. In System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii
International Conference on, volume ii, pages 428 –436 vol.2, jan 1992.

WSD11. Wikipedia entry for Web Services Description Language, 2011.
http://en.wikipedia.org/wiki/Web Services Description Language Viewed
2011-05-17.

36 UNCLASSIFIED

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Reliability Engineering for Service Oriented Archi-
tectures

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHOR

Michael Pilling

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DSTO NUMBER

DSTO–TR–2784
6b. AR NUMBER

AR-015-477
6c. TYPE OF REPORT

Technical Report
7. DOCUMENT DATE

February 2013

8. FILE NUMBER

2012/1082931/1
9. TASK NUMBER

CDG 07/355
10. TASK SPONSOR

DG Integrated
Capability
Development

11. No. OF PAGES

36
12. No. OF REFS

41

13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/

publications/scientific.php

14. RELEASE AUTHORITY

Chief, Command, Control, Communications and
Intelligence Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Software Reliability Certification
Reliability Engineering Software Maintenance
Software Evaluation Service Oriented Architecture

19. ABSTRACT

This paper reviews the state of the art in Software Reliability Engineering (SRE), and adapts these
methods for use in Service Oriented Architecture (SOA). While some prior work has been done on using
SRE for SOA, it is incomplete in terms of whole of development life cycle methodology. We outline
how existing complete methodologies would translate to SOA and provide a surprisingly simple way of
applying these methods to certify the use of legacy software in SOAs. This paper provides a proof of
concept but further work needs to be done to elaborate these methodologies for application in SOA.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Author
	Contents
	Glossary
	1 Introduction
	1.1 CIOG Mandate
	1.2 What is an SOA and why is it di�erent?
	1.3 What do we mean by Reliability?
	1.4 Other approaches to Reliability
	1.5 Data correctness is an important issue this paper doesnot address
	1.6 Uncontrolled (Foreign) Domains
	1.7 Composite Applications
	1.8 What this paper seeks to achieve
	2 Review of Software Reliability Engineering(SRE) Approaches
	2.1 Statistical Analysis based on Markov Chains
	2.2 Musa's Approach
	2.3 Service Oriented Approaches
	3 Orchestration vs. Choreography
	3.1 Languages for Orchestration and Choreography
	3.2 ESB and Service lookup
	3.3 Other service composition issues a�ecting reliability
	4 Applying Software Reliability Engineering toSOA
	4.1 A layered approach to Certifying the SOA
	4.2 Certifying from the core out
	4.3 How we might estimate reliability of Service Composi-tions
	4.4 Performing Upgrades
	4.5 Certifying Legacy Systems as Components
	5 Implications for ADF procurement
	6 Recommendations to enable SOA SRE
	7 Conclusions
	Acknowledgements
	References
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

